

sPHENIX Calorimeters in Geant4

EM calorimeter

Inner hadron calorimeter

BaBar coil and cryostat.

Outer hadron calorimeter

(EMCal): $18 X_0 SPACAL$

(inner HCal) : $1 \lambda_0$ SS-Scint. sampling

(BaBar): $1.4 X_0$

(outer HCal): $4 \lambda_0$ SS-Scint. sampling

Implementation in Geant4

- Enabled with new branch 2DSpacal:
 - In nightly build, but not used by default
 - https://github.com/sPHENIX-Collaboration/macros/pull/2
 - https://github.com/sPHENIX-Collaboration/coresoftware/pull/19
 - Activated with this flag in Fun4All_sPHENIX.C

 Cemc_spacal_configuration = PHG4CylinderGeom_Spacalv1::k2DProjectiveSpacal;
- After many optimization, currently still need ~5min to run the first event due to large number of unique geometry objects. Then ~2 EM shower/min

Towers project towards IP

Stainless steel SS310 Support box

Gap between modules are also implemented

- 300um tolerance outside super modules skins
- ~2mil between SPACAL and SS skin.
- ~2mil between SPACAL modules

2x2 2D tapered SPACAL modules

n Huang <jihuang@bnl.gov>

EMCal Meeting

Detail view – Fiber display

- Tungsten + Epoxy material: 12.18 * g / cm3, 96.9% mass with W
- Fiber: φ440um core (Polystyrene) + 15um skin (PMMA)
 - Thanks to the reference model from A. Kiselev (EIC taskforce & EIC RD1)
- Fiber matrix is layout in triangle pattern with a nominal separation of 1mm. Fiber at least 100um away from surface
- Default: 1-D projective in azimuth. New also available for test: full projective module

Particle view (2x1 modules)

Side view (8x1 modules)

Detail view - adjustment of tower

View from end

View from beam

Detail view – One trick used to speed up construction

- ▶ Most fibers (~700/module) has different length in each SPACAL module (~400 unique pieces), which leads to large number of logical volume in G4, which take ~5min to construct
- Tremendously speed up by using same fiber length per module. This leave a <200um thick W skin at the end of the modules. Expect negligible impact to simulation precision.

Detail view – super module enclosur

135mm

Side walls:

750um SS310 steel skin 300um tolerance outside super modules skins (gap thickness = 600um)

end walls:

750um SS310 steel skin 2mil tolerance outside super modules skins (gap thickness = 50um)

Detail view – more view

 $p_T = 4GeV/c$ negatively charged pions

Energy distribution

Leakage looks OK so far (vs <z>). Still in verification p_{τ} = 4GeV/c electron in sPHENIX field

Leakage: integrated over acceptance p_T = 4GeV/c particles in sPHENIX field

-5 cm < vz < 10 cm, 0<eta<1

8% of photon leave 80-90% energy in EMCal -> kinematic smearing in gamma-Jet measurements

Energy Deposition in EMCal (scint. + abso.) / Total Energy

Do we have that with realistic waving fiber?

Solution: Tilt SPACAL by 25 mrad? Inner HCal veto?

On-going works

- I am verifying the 2D projective setup and revise the performance plots
- Eliton Seidel (Baruch College) is verifying the parameters for Geant4 to model showers in SPACAL
- Nils Feege (SBU) is testing machine learning tools (boosted decision tree and support vector machine) on analyzing EMCal + innerHCal data.

Path forward

Geant4 Implementation

- In nightly built
- (G4 default) Birk effect applied
- Need larger production sample
- Need to finish fine tune and verification of Geant4 parameters

 Studies -
- Quantify leakage & cracks
- Variation of sampling fraction

Digitalization

- Need some details in mapping hit to tower
- Add electronics noise
 - -- Studies --
- Energy resolution
- Verify pion response VS test beam
- Uniformity VS edge/center of block/Super module, VS rapidity

Track – tower matching

- For charged tracks: extrapolate track to towers (need to tune the existing code)
- Clusterizer for photons (need new one for HI environment)
 - -- Studies --
- Electron ID performance with EMCal towers + inner HCal
- Photon response
- Calibration

Final Projection

- Need Upsilon and background simulation
- Photon Jet samples-- Studies --
- Final dielectron candidate line shape near Upsilon peaks
- RAA projection
- Bin migration and unfolding for photons-jets

Extra Information

Looks smooth so far (vs eta). Still in verification p= 5GeV/c electron in sPHENIX field

However, right now there is a confliction and a gap

View of the last row of calorimeter long z axis

View of the last 3 rows of calorimeter from beam side

A solution

Build blocks to fit and machine cut top and bottom to flat

Experimental diamond cut UIUC group

Last row after the surface cut

Put it all together

- 2D R-Z layout from Chris
- Regenerated in MatLab
- now ready to export into Geant4

Beam-axis view

3D view

sPHENIX EMCal

- Upsilon electron ID main driving factor
- 2. Direct photon ID
- 3. Heavy flavor electron ID
- 4. Part of jet energy determination

Compile everything together for barrel electron ID

pp/ep electron ID (EMC+HCAL)

Central AA electron ID (EMC Only)

Fast group of Geant4 hit, need to re-evaluate in realistic towering!

1 RHIC AuAu run

100 B MB events

e+ e- decays

 π rejection 90

 $N_{\rm coll}$ scaled

invariant mass (GeV/c2)

centrality 0-10%

-1 < n < 1

Quantitative comparison for EID performance in Geant4 (group hits to simulate for towers)

Electron Efficiency

Central rapidity, $|\eta| < 0.2$ Effectively projective in polar direction

Forward rapidity, $|\eta| = 0.7 - 0.9$ non-projective in polar direction

Fast group of Geant4 hit, need to re-evaluate in realistic towering!

Larger pseudo-rapidity in central AuAu: under study

- Out of the box: larger $|\eta| \rightarrow$ larger background
 - Longer path length in calorimeter
 - Covers more non-projective towers
- to improve
 - Better estimate of the underlying background event-by-event (improve x1.5)
 - Use (radially) thinner ECal (improve x2)
 - Possibilities for projective towers?

- all events (w/ embedding)
- with EMCal E/p cut (w/ embedding)
- Hijing background (AuAu 10%C in B-field)

On-going R&D on 2D projective SPACAL

Sean Stoll (BNL), Spencer Locks (SBU), Jin Huang (BNL) and others

Two module length

R&D Direction 1: Tapered step screens

R&D Direction 2: Tilting Wireframes

